12職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點(diǎn) → 2023年09月04日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年09月04日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/09/04 作者:匿名 來源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》9月4日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。

單選題

1、展開式中,末3項(xiàng)的系數(shù)(a,x 均未知) 之和為() ?

  • A:22
  • B:12
  • C:10
  • D:-10

答 案:C

解 析:末三項(xiàng)數(shù)之和為

2、函數(shù)的反函數(shù)是()

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:,由于x≤0,故把x與y互換,得所求反函數(shù)為

3、的展開式中,x2的系數(shù)為()

  • A:20
  • B:10
  • C:5
  • D:1

答 案:C

解 析:二項(xiàng)展開式的第二項(xiàng)為,故展開式中的x2的系數(shù)為5.

4、設(shè)函數(shù),則f(x+1)=()

  • A:x2+2x+1
  • B:x2+2x
  • C:x2+1
  • D:x2

答 案:B

解 析:

主觀題

1、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值

答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> (Ⅱ) ?

2、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?

答 案: ?

3、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.

答 案:由△ABC的面積為所以AB =4.因此所以

4、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)時(shí),f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時(shí)取得極小值

填空題

1、設(shè)離散型隨機(jī)變量的分布列如下表,那么的期望等于() ?

答 案:5.48

解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48

2、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有() ?

答 案:2

解 析:當(dāng)x=0時(shí),y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù) 與坐標(biāo)軸的交點(diǎn)共有 2個(gè).

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?