12職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點(diǎn) → 2023年08月25日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年08月25日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/08/25 作者:匿名 來源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》8月25日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。

單選題

1、函數(shù)y=2sinxcosx的最小正周期是() ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:y=2sinxcosx=sin2x,故其最小正周期

2、的導(dǎo)數(shù)是 ?

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

3、函數(shù)f(x)=當(dāng)x∈[-2,+∞)時是增函數(shù),當(dāng)x∈(-∞,-2]時是減函數(shù),則f(1)=() ?

  • A:-3
  • B:13
  • C:7
  • D:由m而定的常數(shù)

答 案:B

解 析:由題意知拋物線的對稱軸為x=-2, ?

4、甲袋內(nèi)有2個白球3個黑球,乙袋內(nèi)有3個白球1個黑球,現(xiàn)從兩個袋內(nèi)各摸出1個球,摸出的兩個球都是白球的概率是

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由已知條件可知此題屬于相互獨(dú)立同時發(fā)生的事件,從甲袋內(nèi)摸到白球的概率為P(A)=乙袋內(nèi)摸到白球的概率為,所以現(xiàn)從兩袋中各提出一個球,摸出的兩個都是白球的概率為

主觀題

1、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 當(dāng)x<-3時,f'(x)>0; 當(dāng)-32時,f'(x)>0; 故f(x)的單調(diào)遞減區(qū)間為(-3,2),f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(2,+∞) ?

2、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.

答 案:(I)因?yàn)?img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×22-4=8.(II)因?yàn)閤<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為

3、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求通項(xiàng)的表達(dá)式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當(dāng)n=1時,由 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項(xiàng)為公差為d=-4的等差數(shù)列,所以是首項(xiàng)為公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得: ?

4、每畝地種果樹20棵時,每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?

答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時,y有最大值,所以每畝地最多種25棵

填空題

1、任選一個不大于20的正整數(shù),它恰好是3的整數(shù)倍的概率是() ?

答 案:

解 析:設(shè)n為不大于20的正整數(shù)的個數(shù),則n=20,m為在這20個數(shù)中3的倍數(shù):3,6、9、12、15、18的個數(shù)。 ∴m=6,∴所求概率= ?

2、已知向量a=(3,2),b=(-4,x),且a⊥b,則x=() ?

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6. ?

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?