12職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類(lèi)成考高起點(diǎn) → 2023年08月24日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年08月24日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/08/24 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》8月24日專(zhuān)為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、() ?

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

2、設(shè)集合M={x||x-2||<2},N={0,1,2,3,4},則M∩N=()

  • A:{2}
  • B:{0,1,2}
  • C:{1,2,3}
  • D:{0,1,2,3,4}

答 案:C

解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.

3、已知雙曲線(xiàn)上一點(diǎn)到兩焦點(diǎn)(-5,0),(5,0)距離之差的絕對(duì)值等于6,則雙曲線(xiàn)方程為() ?

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知條件知雙曲線(xiàn)焦點(diǎn)在x軸上屬于第一類(lèi)標(biāo)準(zhǔn)式,又知c=5,2a=6, ∴a=3,∴所求雙曲線(xiàn)的方程為 ?

4、函數(shù)的定義域是()

  • A:{x|-3≤x≤-1}
  • B:{x|x≤-3或x≥-1}
  • C:{x|1≤x≤3}
  • D:{x|x≤1或x≥3}

答 案:D

解 析:由題可知x2-4x+3≥0,解得x≥3或x≤1,故函數(shù)的定義域?yàn)閧x|x≤1或x≥3}.

主觀題

1、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求通項(xiàng)的表達(dá)式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當(dāng)n=1時(shí),由 也滿(mǎn)足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項(xiàng)為公差為d=-4的等差數(shù)列,所以是首項(xiàng)為公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得: ?

2、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.

答 案:(I)因?yàn)?img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×22-4=8.(II)因?yàn)閤<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為

3、如圖:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小數(shù)表示,保留一位小數(shù)) ?

答 案:如圖 ?

4、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面積

答 案:

填空題

1、任選一個(gè)不大于20的正整數(shù),它恰好是3的整數(shù)倍的概率是() ?

答 案:

解 析:設(shè)n為不大于20的正整數(shù)的個(gè)數(shù),則n=20,m為在這20個(gè)數(shù)中3的倍數(shù):3,6、9、12、15、18的個(gè)數(shù)。 ∴m=6,∴所求概率= ?

2、函數(shù)y=的定義域是()

答 案:[1,+∞)

解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域?yàn)閧x|x≥1}=[1,+∞) ?

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?