答 案:D
解 析:
?
2、某類燈泡使用時數在1000小時以上的概率為0.2,三個燈泡在使用1000小時以后最多只有一個壞的概率為()
答 案:B
解 析:已知燈泡使用1000小時后好的概率為0.2,壞的概率為1-0.2=0.8,則三個燈泡使用1000小時以后,可分別求得: P(沒有壞的)
P(一個壞的)故最多只有一個壞的概率為:0.008+0.096=0.104.
?
3、如果不共線的向量a和b有相等的長度,則(a+b)(a-b)=()
?
答 案:A
解 析:(a+b)(a-b)=
4、設雙曲線的漸近線的斜率為k,則|k|=()
?
答 案:D
解 析:雙曲線漸近線的斜率為k故本題中k
主觀題
1、建筑一個容積為8000,深為6m的長方體蓄水池,池壁每的造價為15元,池底每的造價為30元。(I)把總造價y(元)表示為長x(m)的函數;(Ⅱ)求函數的定義域
?
答 案:
2、已知等差數列前n項和
(Ⅰ)求這個數列的通項公式;(Ⅱ)求數列第六項到第十項的和
答 案:
?
3、為了測河的寬,在岸邊選定兩點A和B,望對岸標記物C,測得AB=120m,求河的寬
答 案:如圖,
∵∠C=180°-30°-75°=75°
∴△ABC為等腰三角形,則AC=AB=120m
過C做CD⊥AB,則由Rt△ACD可求得CD==60m,
即河寬為60m
?
4、在正四棱柱ABCD-A'B'C'D'中,
(Ⅰ)寫出向量和關于基底{a,b,c}的分解式;
(Ⅱ)求證:
(Ⅲ)求證:
?
答 案:(Ⅰ)由題意知(如圖所示)
?
填空題
1、函數的圖像與坐標軸的交點共有()
?
答 案:2
解 析:當x=0時,y=-2=-1,故函數與y軸交于(0,-1)點,令y=0,則有故函數與x軸交于(1,0) 點,因此函數 與坐標軸的交點共有 2個.
2、lg(tan43°tan45°tan47°)=()
?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0