2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月21日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、設(shè)A、B、C是三個(gè)隨機(jī)事件,用A、B、C的運(yùn)算關(guān)系()表示事件:B、C都發(fā)生,而A不發(fā)生 ?
- A:
- B:
- C:
- D:
答 案:B
解 析:選項(xiàng)A,表示A或B發(fā)生或C不發(fā)生,選項(xiàng)C,表示A不發(fā)生或B、C不發(fā)生.選項(xiàng)D,表示A發(fā)生且 B、C 不發(fā)生.
2、設(shè)甲:;乙:.則()
- A:甲是乙的必要條件但不是充分條件
- B:甲是乙的充分條件但不是必要條件
- C:甲是乙的充要條件
- D:甲既不是乙的充分條件也不是乙的必要條件
答 案:A
解 析:三角形相似不一定全等,但三角形全等一定相似,因此,甲是乙的必要條件但不是充分條件.
3、函數(shù)的定義域是()
- A:{x|-3<x<-1}
- B:{x|x<-3或x>-1}
- C:{x|1<x<3}
- D:{x|x<1或x>3}
答 案:D
解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,解得x>3或x<1,因此函數(shù)的定義域?yàn)閧x|x<1或x>3}
4、從點(diǎn)M(x,3)向圓作切線,切線的最小值等于() ?
- A:4
- B:
- C:5
- D:
答 案:B
解 析:如圖,相切是直線與圓的位置關(guān)系中的一種,此題利用圓心坐標(biāo)、半徑,求出切線長(zhǎng). 由圓的方程知,圓心為B(-2,-2),半徑為1,設(shè)切點(diǎn)為A, 由勾股定理得, 當(dāng)x+2=0時(shí),MA取最小值,最小值為 ?
主觀題
1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)
2、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求這個(gè)數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列第六項(xiàng)到第十項(xiàng)的和
答 案: ?
3、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬
答 案:如圖, ∵∠C=180°-30°-75°=75° ∴△ABC為等腰三角形,則AC=AB=120m 過(guò)C做CD⊥AB,則由Rt△ACD可求得CD==60m, 即河寬為60m ?
4、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?
答 案: ?
填空題
1、長(zhǎng)方體的長(zhǎng)、寬、高分別為2,3,6,則該長(zhǎng)方體的對(duì)角線長(zhǎng)為()
答 案:7
解 析:由題可知長(zhǎng)方體的底面的對(duì)角線長(zhǎng)為,則在由高、底面對(duì)角線、長(zhǎng)方體的對(duì)角線組成的三角形中,長(zhǎng)方體的對(duì)角線長(zhǎng)為
2、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?
答 案:
解 析:由于a//b,故