2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》6月17日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、函數(shù)f(x)=當(dāng)x∈[-2,+∞)時(shí)是增函數(shù),當(dāng)x∈(-∞,-2]時(shí)是減函數(shù),則f(1)=() ?
- A:-3
- B:13
- C:7
- D:由m而定的常數(shù)
答 案:B
解 析:由題意知拋物線的對(duì)稱軸為x=-2, ?
2、設(shè)集合S={(x,y)|xy>0},T={(x,y)|x>0,且y>0},則
- A:S∪T=S
- B:S∪T=T
- C:S∩T=S
- D:S∩T=?
答 案:A
解 析:由已知條件可知集合S表示的是第第一,三象限的點(diǎn)集,集合T表示的是第一象限內(nèi)點(diǎn)的集合,所以所以有S∪T=S,S∩T=T,所以選擇A。
3、甲袋內(nèi)有2個(gè)白球3個(gè)黑球,乙袋內(nèi)有3個(gè)白球1個(gè)黑球,現(xiàn)從兩個(gè)袋內(nèi)各摸出1個(gè)球,摸出的兩個(gè)球都是白球的概率是
- A:
- B:
- C:
- D:
答 案:C
解 析:由已知條件可知此題屬于相互獨(dú)立同時(shí)發(fā)生的事件,從甲袋內(nèi)摸到白球的概率為P(A)=乙袋內(nèi)摸到白球的概率為,所以現(xiàn)從兩袋中各提出一個(gè)球,摸出的兩個(gè)都是白球的概率為
4、袋中有6個(gè)球,其中4個(gè)紅球,2個(gè)白球,從中隨機(jī)取出2個(gè)球,則這2個(gè)球都為紅球的概率為()
- A:
- B:
- C:
- D:
答 案:C
解 析:兩個(gè)球都是紅球的概率為
主觀題
1、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
2、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.
答 案:(I)因?yàn)?img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×22-4=8.(II)因?yàn)閤<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為
3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
4、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面積.
答 案:因?yàn)锳= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面積
填空題
1、點(diǎn)(4,5)關(guān)于直線y=x的對(duì)稱點(diǎn)的坐標(biāo)為()
答 案:(5,4)
解 析:點(diǎn)(4,5)關(guān)于直線y=x的對(duì)稱點(diǎn)為(5,4).
2、設(shè)則
答 案:-1
解 析: ?