12職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學歷類成考(專升本) → 2023年09月30日成考專升本每日一練《高等數(shù)學二》

2023年09月30日成考專升本每日一練《高等數(shù)學二》

2023/09/30 作者:匿名 來源:本站整理

2023年成考專升本每日一練《高等數(shù)學二》9月30日專為備考2023年高等數(shù)學二考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。

判斷題

1、若,則。() ?

答 案:錯

解 析:所以 ?

單選題

1、當x趨于0時,若sin2x與xk是等價無窮小量,則k=().

  • A:
  • B:1
  • C:2
  • D:3

答 案:C

解 析:當k=2時,有,即.

2、設(shè),則().

  • A:sin(x2y)
  • B:x2sin(x2y)
  • C:-sin(x2y)
  • D:-x2sin(x2y)

答 案:D

解 析:

主觀題

1、求由曲線y=ex,y=e-x及x=1所圍成的平面圖形的面積以及此平面圖形繞x軸旋轉(zhuǎn)一周所成的旋轉(zhuǎn)體的體積Vx

答 案:解:其平面圖形如圖所示,則平面圖形面積旋轉(zhuǎn)體的體積為

2、設(shè)函數(shù)其中是f(u)二階可微的.

答 案:證明:證:分別將z對x和y求偏導得所以

填空題

1、設(shè),則dz=()

答 案:

解 析:方法一:把u,v代入中,有方法二:按復合求導法則求導,再代入全微分公式中,。
所以
方法三:利用一階微分形式的不變性

2、若 ?

答 案:-1

解 析: 注:注意導數(shù)定義的結(jié)構(gòu)特點. ?

簡答題

1、求函數(shù)的倒數(shù)。 ?

答 案:等式兩邊同時取對數(shù)得 方程兩邊同時對x求導有

2、設(shè)D為由曲線y=x2,y=0,x=2所圍成的圖形. (1)求D的面積; (2)求D繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積. ?

答 案:(1)D的面積 (2)D繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積 ?

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?