2023年成考專升本每日一練《高等數(shù)學(xué)一》9月19日專為備考2023年高等數(shù)學(xué)一考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、設(shè),則y'=()。
- A:
- B:
- C:
- D:
答 案:C
解 析:y=x4,則。
2、用待定系數(shù)法求方程y''-y=xex的特解時(shí),特解應(yīng)設(shè)為()。
- A:y=Ae-x+Bex
- B:y=(Ax+B)xex
- C:y=(Ax+B)ex
- D:y=(A+B)xex
答 案:B
解 析:因?yàn)樵撐⒎址匠痰奶卣鞣匠虨?img src="https://img2.meite.com/questions/202212/016388695614e7e.png" />,顯然該特征方程的根為,故特解應(yīng)設(shè)為。
3、設(shè)函數(shù)y=ex-2,則dy=( )
- A:ex-3dx
- B:ex-2dx
- C:ex-1dx
- D:exdx
答 案:B
主觀題
1、計(jì)算
答 案:解:
2、某廠要生產(chǎn)容積為V0的圓柱形罐頭盒,問(wèn)怎樣設(shè)計(jì)才能使所用材料最省?
答 案:解:設(shè)圓柱形罐頭盒的底圓半徑為r,高為h,表面積為S,則由②得,代入①得現(xiàn)在的問(wèn)題歸結(jié)為求r在(0,+∞)上取何值時(shí),函數(shù)S在其上的值最小。
令,得
由②,當(dāng)時(shí),相應(yīng)的h為:。
可見當(dāng)所做罐頭盒的高與底圓直徑相等時(shí),所用材料最省。
3、求微分方程的通解。
答 案:解:對(duì)應(yīng)的齊次方程為。特征方程,特征根齊次方程通解為原方程特解為,代入原方程可得,因此。
方程通解為
填空題
1、設(shè)則dy=() ?
答 案:
解 析:故有
2、=()。
答 案:2(e-1)
解 析:。
3、設(shè)a≠0,則=()。
答 案:
解 析:。
簡(jiǎn)答題
1、求微分方程滿足初值條件的特解 ?
答 案: ?